Properties

Label 383496.m
Number of curves $4$
Conductor $383496$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 383496.m have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(19\)\(1 - T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 383496.m do not have complex multiplication.

Modular form 383496.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} + 2 q^{13} - 2 q^{15} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 383496.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
383496.m1 383496m3 \([0, -1, 0, -1070032, 414581260]\) \(111223479026/3518667\) \(4286433670007003136\) \([2]\) \(4816896\) \(2.3498\)  
383496.m2 383496m2 \([0, -1, 0, -161752, -15943460]\) \(768400132/263169\) \(160295995969790976\) \([2, 2]\) \(2408448\) \(2.0033\)  
383496.m3 383496m1 \([0, -1, 0, -144932, -21184572]\) \(2211014608/513\) \(78116957100288\) \([2]\) \(1204224\) \(1.6567\) \(\Gamma_0(N)\)-optimal
383496.m4 383496m4 \([0, -1, 0, 477408, -111306132]\) \(9878111854/10097379\) \(-12300608532839749632\) \([2]\) \(4816896\) \(2.3498\)