Properties

Label 38291.d
Number of curves 3
Conductor 38291
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("38291.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 38291.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
38291.d1 38291c3 [0, -1, 1, -27222580, 54678189475] [] 1036750  
38291.d2 38291c2 [0, -1, 1, -35970, 4768035] [] 207350  
38291.d3 38291c1 [0, -1, 1, -1160, -35745] [] 41470 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 38291.d have rank \(0\).

Modular form 38291.2.a.d

sage: E.q_eigenform(10)
 
\( q + 2q^{2} - q^{3} + 2q^{4} + q^{5} - 2q^{6} - 2q^{7} - 2q^{9} + 2q^{10} - q^{11} - 2q^{12} - 4q^{13} - 4q^{14} - q^{15} - 4q^{16} - 2q^{17} - 4q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.