# Properties

 Label 38148a Number of curves 2 Conductor 38148 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("38148.c1")

sage: E.isogeny_class()

## Elliptic curves in class 38148a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
38148.c2 38148a1 [0, -1, 0, 771, -4806]  29568 $$\Gamma_0(N)$$-optimal
38148.c1 38148a2 [0, -1, 0, -3564, -37752]  59136

## Rank

sage: E.rank()

The elliptic curves in class 38148a have rank $$0$$.

## Modular form 38148.2.a.c

sage: E.q_eigenform(10)

$$q - q^{3} - 2q^{5} + 2q^{7} + q^{9} - q^{11} - 2q^{13} + 2q^{15} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 