Properties

Label 38115p
Number of curves $2$
Conductor $38115$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 38115p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
38115.c2 38115p1 [0, 0, 1, -9736023, 13693302378] [] 5760000 \(\Gamma_0(N)\)-optimal
38115.c1 38115p2 [0, 0, 1, -29174673, -1146695537232] [] 28800000  

Rank

sage: E.rank()
 

The elliptic curves in class 38115p have rank \(1\).

Complex multiplication

The elliptic curves in class 38115p do not have complex multiplication.

Modular form 38115.2.a.p

sage: E.q_eigenform(10)
 
\( q - 2q^{2} + 2q^{4} - q^{5} - q^{7} + 2q^{10} + 6q^{13} + 2q^{14} - 4q^{16} - 7q^{17} + 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.