Properties

Label 381150py
Number of curves $1$
Conductor $381150$
CM no
Rank $1$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("py1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 381150py

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
381150.py1 381150py1 [1, -1, 1, 121945, 46996447] [] 7987200 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 381150py1 has rank \(1\).

Complex multiplication

The elliptic curves in class 381150py do not have complex multiplication.

Modular form 381150.2.a.py

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} + q^{7} + q^{8} + 3q^{13} + q^{14} + q^{16} - 7q^{17} + 6q^{19} + O(q^{20}) \)