Properties

Label 379050bg1
Conductor $379050$
Discriminant $-1.860\times 10^{27}$
j-invariant \( -\frac{11283450590382195961}{2530373271552000} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -421715875, 3926242778125])
 
gp: E = ellinit([1, 1, 0, -421715875, 3926242778125])
 
magma: E := EllipticCurve([1, 1, 0, -421715875, 3926242778125]);
 

\(y^2+xy=x^3+x^2-421715875x+3926242778125\)  Toggle raw display

Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(17725, 1412575\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $2.3549698507031193306275694586$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-24170, 12085\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-24170, 12085\right) \), \( \left(17725, 1412575\right) \), \( \left(17725, -1430300\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 379050 \)  =  $2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-1860056872172126208000000000 $  =  $-1 \cdot 2^{28} \cdot 3^{4} \cdot 5^{9} \cdot 7^{2} \cdot 19^{7} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{11283450590382195961}{2530373271552000} \)  =  $-1 \cdot 2^{-28} \cdot 3^{-4} \cdot 5^{-3} \cdot 7^{-2} \cdot 19^{-1} \cdot 2242921^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.9527383430848341792265965208\dots$
Stable Faltings height: $1.6757998972845637619217031382\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $2.3549698507031193306275694586\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.044798804314327159563633383723\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 128 $  = $ 2\cdot2\cdot2^{2}\cdot2\cdot2^{2} $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 3.3759946722492572515488306663231194111 $

Modular invariants

Modular form 379050.2.a.bg

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} - 4q^{11} - q^{12} + 2q^{13} - q^{14} + q^{16} - 6q^{17} - q^{18} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 232243200
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{28}$ Non-split multiplicative 1 1 28 28
$3$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$5$ $4$ $I_3^{*}$ Additive 1 2 9 3
$7$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$19$ $4$ $I_1^{*}$ Additive -1 2 7 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 379050bg consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-95}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{5}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{-19}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{5}, \sqrt{-19})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.4.9755433884160000.31 \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.