Properties

Label 379050.k
Number of curves $1$
Conductor $379050$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 379050.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
379050.k1 379050k1 \([1, 1, 0, -2972009400, 144690871003200]\) \(-98735339854432038328225/250451215107692352768\) \(-7364186288913685383083342880000\) \([]\) \(754790400\) \(4.6106\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 379050.k1 has rank \(1\).

Complex multiplication

The elliptic curves in class 379050.k do not have complex multiplication.

Modular form 379050.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} - 2q^{11} - q^{12} + 3q^{13} + q^{14} + q^{16} + 2q^{17} - q^{18} + O(q^{20})\)  Toggle raw display