Properties

Label 379050.f
Number of curves $2$
Conductor $379050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 379050.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
379050.f1 379050f1 \([1, 1, 0, -1096725, 747550125]\) \(-549754417/592704\) \(-157284777322701000000\) \([]\) \(13296960\) \(2.5703\) \(\Gamma_0(N)\)-optimal
379050.f2 379050f2 \([1, 1, 0, 9191775, -13502022375]\) \(323648023823/484243284\) \(-128502755328044791312500\) \([]\) \(39890880\) \(3.1196\)  

Rank

sage: E.rank()
 

The elliptic curves in class 379050.f have rank \(1\).

Complex multiplication

The elliptic curves in class 379050.f do not have complex multiplication.

Modular form 379050.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} - 3q^{11} - q^{12} - 2q^{13} + q^{14} + q^{16} - 3q^{17} - q^{18} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.