# Properties

 Label 37830.bd2 Conductor 37830 Discriminant -7720094603520000000 j-invariant $$-\frac{26317019808774730149841}{7720094603520000000}$$ CM no Rank 0 Torsion Structure $$\Z/{7}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -619685, 230436225]); // or

magma: E := EllipticCurve("37830z1");

sage: E = EllipticCurve([1, 0, 0, -619685, 230436225]) # or

sage: E = EllipticCurve("37830z1")

gp: E = ellinit([1, 0, 0, -619685, 230436225]) \\ or

gp: E = ellinit("37830z1")

$$y^2 + x y = x^{3} - 619685 x + 230436225$$

## Mordell-Weil group structure

$$\Z/{7}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(370, 7015\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-530, 20515\right)$$, $$\left(370, 7015\right)$$, $$\left(1090, 28615\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$37830$$ = $$2 \cdot 3 \cdot 5 \cdot 13 \cdot 97$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-7720094603520000000$$ = $$-1 \cdot 2^{14} \cdot 3^{14} \cdot 5^{7} \cdot 13 \cdot 97$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{26317019808774730149841}{7720094603520000000}$$ = $$-1 \cdot 2^{-14} \cdot 3^{-14} \cdot 5^{-7} \cdot 13^{-1} \cdot 61^{3} \cdot 97^{-1} \cdot 211^{3} \cdot 2311^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.221967549914$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$1372$$  = $$( 2 \cdot 7 )\cdot( 2 \cdot 7 )\cdot7\cdot1\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$7$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 37830.2.a.bd

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + 5q^{11} + q^{12} - q^{13} + q^{14} + q^{15} + q^{16} - 3q^{17} + q^{18} - 8q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 1141504 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$6.21509139758$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$14$$ $$I_{14}$$ Split multiplicative -1 1 14 14
$$3$$ $$14$$ $$I_{14}$$ Split multiplicative -1 1 14 14
$$5$$ $$7$$ $$I_{7}$$ Split multiplicative -1 1 7 7
$$13$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$97$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$7$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 13 97 split split split ordinary nonsplit nonsplit 3 1 1 4 0 0 0 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 7.
Its isogeny class 37830.bd consists of 2 curves linked by isogenies of degree 7.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{7}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.25220.1 $$\Z/14\Z$$ Not in database
6 6.0.16041140648000.1 $$\Z/2\Z \times \Z/14\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.