Minimal Weierstrass equation
\(y^2=x^3+x^2-194066616x+1040389299684\)
Mordell-Weil group structure
$\Z\times \Z/{2}\Z \times \Z/{2}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(8214, 24300\right)\)
|
$\hat{h}(P)$ | ≈ | $1.4959966809891333322589053806$ |
Torsion generators
\( \left(7971, 0\right) \), \( \left(8114, 0\right) \)
Integral points
\( \left(-16086, 0\right) \), \((-6186,\pm 1415700)\), \((7872,\pm 23958)\), \( \left(7971, 0\right) \), \( \left(8114, 0\right) \), \((8214,\pm 24300)\), \((13155,\pm 874152)\), \((42720,\pm 8409258)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 377520 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $110893406832582042240000 $ | = | $2^{10} \cdot 3^{14} \cdot 5^{4} \cdot 11^{8} \cdot 13^{2} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{445574312599094932036}{61129333175625} \) | = | $2^{2} \cdot 3^{-14} \cdot 5^{-4} \cdot 7^{3} \cdot 11^{-2} \cdot 13^{-2} \cdot 643^{3} \cdot 1069^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $3.4397201800310088497922152902\dots$ | ||
Stable Faltings height: | $1.6631498931652024865802167333\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.4959966809891333322589053806\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.10172825219747958645332707703\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 896 $ = $ 2^{2}\cdot( 2 \cdot 7 )\cdot2\cdot2^{2}\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $4$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 8.5223671484142783638433844459 $ |
Modular invariants
Modular form 377520.2.a.dy
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 82575360 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | Additive | 1 | 4 | 10 | 0 |
$3$ | $14$ | $I_{14}$ | Split multiplicative | -1 | 1 | 14 | 14 |
$5$ | $2$ | $I_{4}$ | Non-split multiplicative | 1 | 1 | 4 | 4 |
$11$ | $4$ | $I_{2}^{*}$ | Additive | -1 | 2 | 8 | 2 |
$13$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 377520dy
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{33}, \sqrt{-39})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-33})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{143})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.