Properties

Label 37440dy
Number of curves $4$
Conductor $37440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 37440dy have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 37440dy do not have complex multiplication.

Modular form 37440.2.a.dy

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{7} - q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 37440dy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37440.r3 37440dy1 \([0, 0, 0, -3468, 504592]\) \(-24137569/561600\) \(-107323431321600\) \([2]\) \(73728\) \(1.3730\) \(\Gamma_0(N)\)-optimal
37440.r2 37440dy2 \([0, 0, 0, -118668, 15664912]\) \(967068262369/4928040\) \(941763109847040\) \([2]\) \(147456\) \(1.7195\)  
37440.r4 37440dy3 \([0, 0, 0, 31092, -13333232]\) \(17394111071/411937500\) \(-78722482176000000\) \([2]\) \(221184\) \(1.9223\)  
37440.r1 37440dy4 \([0, 0, 0, -688908, -208885232]\) \(189208196468929/10860320250\) \(2075439520088064000\) \([2]\) \(442368\) \(2.2688\)