Show commands: SageMath
Rank
The elliptic curves in class 37440dq have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 37440dq do not have complex multiplication.Modular form 37440.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 37440dq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 37440.bk4 | 37440dq1 | \([0, 0, 0, 6072, 12152]\) | \(33165879296/19278675\) | \(-14391453772800\) | \([2]\) | \(49152\) | \(1.2142\) | \(\Gamma_0(N)\)-optimal |
| 37440.bk3 | 37440dq2 | \([0, 0, 0, -24348, 97328]\) | \(133649126224/77000625\) | \(919690536960000\) | \([2, 2]\) | \(98304\) | \(1.5608\) | |
| 37440.bk2 | 37440dq3 | \([0, 0, 0, -258348, -50353072]\) | \(39914580075556/172718325\) | \(8251746479308800\) | \([2]\) | \(196608\) | \(1.9074\) | |
| 37440.bk1 | 37440dq4 | \([0, 0, 0, -277068, 55998992]\) | \(49235161015876/137109375\) | \(6550502400000000\) | \([2]\) | \(196608\) | \(1.9074\) |