Properties

Label 37440.fu
Number of curves $4$
Conductor $37440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("fu1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 37440.fu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37440.fu1 37440ck4 \([0, 0, 0, -299532, -63097616]\) \(31103978031362/195\) \(18632540160\) \([2]\) \(196608\) \(1.5763\)  
37440.fu2 37440ck3 \([0, 0, 0, -25932, -158096]\) \(20183398562/11567205\) \(1105263649751040\) \([2]\) \(196608\) \(1.5763\)  
37440.fu3 37440ck2 \([0, 0, 0, -18732, -984656]\) \(15214885924/38025\) \(1816672665600\) \([2, 2]\) \(98304\) \(1.2297\)  
37440.fu4 37440ck1 \([0, 0, 0, -732, -27056]\) \(-3631696/24375\) \(-291133440000\) \([2]\) \(49152\) \(0.88311\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 37440.fu have rank \(1\).

Complex multiplication

The elliptic curves in class 37440.fu do not have complex multiplication.

Modular form 37440.2.a.fu

sage: E.q_eigenform(10)
 
\(q + q^{5} + 4q^{7} + 4q^{11} - q^{13} - 6q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.