## Results (34 matches)

displayed columns for results
Label Class Conductor Rank Torsion CM Weierstrass equation
3744.a1 3744.a $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-26121x-1624444$$
3744.a2 3744.a $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-22476x-2093920$$
3744.b1 3744.b $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-1836x+30240$$
3744.b2 3744.b $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-81x+756$$
3744.c1 3744.c $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-1836x-30240$$
3744.c2 3744.c $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-81x-756$$
3744.d1 3744.d $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-26121x+1624444$$
3744.d2 3744.d $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-22476x+2093920$$
3744.e1 3744.e $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-3x-106$$
3744.f1 3744.f $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-3x+106$$
3744.g1 3744.g $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-300x+704$$
3744.g2 3744.g $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-165x-808$$
3744.h1 3744.h $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-11820x-494336$$
3744.h2 3744.h $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-885x-4448$$
3744.i1 3744.i $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-11820x+494336$$
3744.i2 3744.i $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-885x+4448$$
3744.j1 3744.j $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-300x-704$$
3744.j2 3744.j $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-165x+808$$
3744.k1 3744.k $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-129x+452$$
3744.k2 3744.k $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+276x+2720$$
3744.l1 3744.l $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/4\Z$ $$y^2=x^3-33699x+2381078$$
3744.l2 3744.l $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-3324x-10528$$
3744.l3 3744.l $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-2109x+37100$$
3744.l4 3744.l $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-939x+78050$$
3744.m1 3744.m $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-204x+1120$$
3744.m2 3744.m $$2^{5} \cdot 3^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-9x+28$$
3744.n1 3744.n $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-204x-1120$$
3744.n2 3744.n $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-9x-28$$
3744.o1 3744.o $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-33699x-2381078$$
3744.o2 3744.o $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/4\Z$ $$y^2=x^3-3324x+10528$$
3744.o3 3744.o $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-2109x-37100$$
3744.o4 3744.o $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-939x-78050$$
3744.p1 3744.p $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-129x-452$$
3744.p2 3744.p $$2^{5} \cdot 3^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+276x-2720$$
displayed columns for results