Show commands for:
SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()
Elliptic curves in class 372810n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
372810.n3 | 372810n1 | [1, 1, 0, -19802, -1079484] | [2] | 983040 | \(\Gamma_0(N)\)-optimal |
372810.n2 | 372810n2 | [1, 1, 0, -25582, -405536] | [2, 2] | 1966080 | |
372810.n1 | 372810n3 | [1, 1, 0, -242332, 45502114] | [2] | 3932160 | |
372810.n4 | 372810n4 | [1, 1, 0, 98688, -3064914] | [2] | 3932160 |
Rank
sage: E.rank()
The elliptic curves in class 372810n have rank \(2\).
Complex multiplication
The elliptic curves in class 372810n do not have complex multiplication.Modular form 372810.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.