Show commands for:
SageMath
sage: E = EllipticCurve("cv1")
sage: E.isogeny_class()
Elliptic curves in class 372810.cv
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
372810.cv1 | 372810cv2 | [1, 0, 0, -47909270, -127641047388] | [2] | 49674240 | |
372810.cv2 | 372810cv1 | [1, 0, 0, -2963990, -2036967900] | [2] | 24837120 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 372810.cv have rank \(0\).
Complex multiplication
The elliptic curves in class 372810.cv do not have complex multiplication.Modular form 372810.2.a.cv
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.