Properties

Label 371280.cy
Number of curves $8$
Conductor $371280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cy1")
 
E.isogeny_class()
 

Elliptic curves in class 371280.cy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
371280.cy1 371280cy7 \([0, -1, 0, -36136447040, 2644041474756480]\) \(1274090022584975661628188489514561/14072533302105480763470\) \(57641096405424049207173120\) \([4]\) \(603979776\) \(4.5125\)  
371280.cy2 371280cy5 \([0, -1, 0, -2260329440, 41244506419200]\) \(311802066473807207098058600161/1033693082103011001480900\) \(4234006864293933062065766400\) \([2, 4]\) \(301989888\) \(4.1659\)  
371280.cy3 371280cy4 \([0, -1, 0, -2224245920, -40375167552768]\) \(297106512928238351998640242081/3977028808593750000\) \(16289910000000000000000\) \([2]\) \(150994944\) \(3.8194\)  
371280.cy4 371280cy8 \([0, -1, 0, -1286483840, 77018919304320]\) \(-57487943130312093140621093761/592356094985924086700006670\) \(-2426290565062345059123227320320\) \([4]\) \(603979776\) \(4.5125\)  
371280.cy5 371280cy3 \([0, -1, 0, -203937440, 16314489600]\) \(229010110533436633465952161/132501160769452503210000\) \(542724754511677453148160000\) \([2, 4]\) \(150994944\) \(3.8194\)  
371280.cy6 371280cy2 \([0, -1, 0, -139137440, -629663750400]\) \(72727020009972527154752161/265361167808100000000\) \(1086919343341977600000000\) \([2, 2]\) \(75497472\) \(3.4728\)  
371280.cy7 371280cy1 \([0, -1, 0, -4768160, -18767255808]\) \(-2926956820564562516641/35459588343029760000\) \(-145242473853049896960000\) \([2]\) \(37748736\) \(3.1262\) \(\Gamma_0(N)\)-optimal
371280.cy8 371280cy6 \([0, -1, 0, 815654560, 129693120000]\) \(14651516183052242700771495839/8480668142378708755560900\) \(-34736816711183191062777446400\) \([4]\) \(301989888\) \(4.1659\)  

Rank

sage: E.rank()
 

The elliptic curves in class 371280.cy have rank \(0\).

Complex multiplication

The elliptic curves in class 371280.cy do not have complex multiplication.

Modular form 371280.2.a.cy

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{7} + q^{9} + 4 q^{11} + q^{13} - q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 16 & 4 & 4 & 8 & 16 & 8 \\ 2 & 1 & 8 & 2 & 2 & 4 & 8 & 4 \\ 16 & 8 & 1 & 16 & 4 & 2 & 4 & 8 \\ 4 & 2 & 16 & 1 & 4 & 8 & 16 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 2 & 8 & 2 & 1 & 2 & 4 \\ 16 & 8 & 4 & 16 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.