Properties

Label 37026bl
Number of curves $2$
Conductor $37026$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bl1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 37026bl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
37026.z2 37026bl1 [1, -1, 1, -13091, 470495] [2] 92160 \(\Gamma_0(N)\)-optimal
37026.z1 37026bl2 [1, -1, 1, -198221, 34016051] [2] 184320  

Rank

sage: E.rank()
 

The elliptic curves in class 37026bl have rank \(1\).

Complex multiplication

The elliptic curves in class 37026bl do not have complex multiplication.

Modular form 37026.2.a.bl

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} - 2q^{5} + 2q^{7} + q^{8} - 2q^{10} - 4q^{13} + 2q^{14} + q^{16} + q^{17} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.