Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 3700.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3700.e1 | 3700a1 | \([0, 1, 0, -133, -137]\) | \(65536/37\) | \(148000000\) | \([]\) | \(960\) | \(0.25775\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 3700.e1 has rank \(0\).
Complex multiplication
The elliptic curves in class 3700.e do not have complex multiplication.Modular form 3700.2.a.e
sage: E.q_eigenform(10)