Properties

Label 3700.e
Number of curves $1$
Conductor $3700$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 3700.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3700.e1 3700a1 \([0, 1, 0, -133, -137]\) \(65536/37\) \(148000000\) \([]\) \(960\) \(0.25775\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3700.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3700.e do not have complex multiplication.

Modular form 3700.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{7} - 2 q^{9} + 5 q^{11} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display