Properties

Label 3700.d
Number of curves $1$
Conductor $3700$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 3700.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3700.d1 3700d1 \([0, 1, 0, -1133, 863]\) \(40247296/23125\) \(92500000000\) \([]\) \(2304\) \(0.79384\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3700.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3700.d do not have complex multiplication.

Modular form 3700.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} - 3 q^{11} + 6 q^{13} + O(q^{20})\) Copy content Toggle raw display