Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 3700.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3700.a1 | 3700e1 | \([0, 0, 0, -5486200, 4920596500]\) | \(4565397831743545344/27087483203125\) | \(108349932812500000000\) | \([]\) | \(299520\) | \(2.6842\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 3700.a1 has rank \(1\).
Complex multiplication
The elliptic curves in class 3700.a do not have complex multiplication.Modular form 3700.2.a.a
sage: E.q_eigenform(10)