Properties

 Label 370.c1 Conductor $370$ Discriminant $-378880$ j-invariant $$\frac{214921799}{378880}$$ CM no Rank $0$ Torsion structure trivial

Related objects

Show commands: Magma / Oscar / PariGP / SageMath

Simplified equation

 $$y^2+xy=x^3+x^2+13x-19$$ y^2+xy=x^3+x^2+13x-19 (homogenize, simplify) $$y^2z+xyz=x^3+x^2z+13xz^2-19z^3$$ y^2z+xyz=x^3+x^2z+13xz^2-19z^3 (dehomogenize, simplify) $$y^2=x^3+16173x-1132434$$ y^2=x^3+16173x-1132434 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 1, 0, 13, -19])

gp: E = ellinit([1, 1, 0, 13, -19])

magma: E := EllipticCurve([1, 1, 0, 13, -19]);

oscar: E = elliptic_curve([1, 1, 0, 13, -19])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);

Integral points

None

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

Invariants

 Conductor: $$370$$ = $2 \cdot 5 \cdot 37$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $-378880$ = $-1 \cdot 2^{11} \cdot 5 \cdot 37$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$\frac{214921799}{378880}$$ = $2^{-11} \cdot 5^{-1} \cdot 37^{-1} \cdot 599^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $-0.24473035617845583706172195427\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $-0.24473035617845583706172195427\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E) $abc$ quality: $0.8690580429158563\dots$ Szpiro ratio: $3.3654826252538874\dots$

BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $1.5799277404574723806009738099\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $1$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $1$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ ( exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $1.5799277404574723806009738099$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

BSD formula

$\displaystyle 1.579927740 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.579928 \cdot 1.000000 \cdot 1}{1^2} \approx 1.579927740$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

Modular invariants

$$q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} + q^{7} - q^{8} + q^{9} - q^{10} + 3 q^{11} + 2 q^{12} - q^{14} + 2 q^{15} + q^{16} + 3 q^{17} - q^{18} - 6 q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

For more coefficients, see the Downloads section to the right.

Modular degree: 44
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: yes
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

Local data

This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $v_p(N)$ $v_p(\Delta)$ $v_p(\mathrm{den}(j))$
$2$ $1$ $I_{11}$ nonsplit multiplicative 1 1 11 11
$5$ $1$ $I_{1}$ split multiplicative -1 1 1 1
$37$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[1479, 2, 1478, 3], [1111, 2, 1111, 3], [741, 2, 741, 3], [1, 1, 1479, 0], [297, 2, 297, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1001, 2, 1001, 3]]

GL(2,Integers(1480)).subgroup(gens)

Gens := [[1479, 2, 1478, 3], [1111, 2, 1111, 3], [741, 2, 741, 3], [1, 1, 1479, 0], [297, 2, 297, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1001, 2, 1001, 3]];

sub<GL(2,Integers(1480))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$1480 = 2^{3} \cdot 5 \cdot 37$$, index $2$, genus $0$, and generators

$\left(\begin{array}{rr} 1479 & 2 \\ 1478 & 3 \end{array}\right),\left(\begin{array}{rr} 1111 & 2 \\ 1111 & 3 \end{array}\right),\left(\begin{array}{rr} 741 & 2 \\ 741 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1479 & 0 \end{array}\right),\left(\begin{array}{rr} 297 & 2 \\ 297 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1001 & 2 \\ 1001 & 3 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[1480])$ is a degree-$671726960640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1480\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ nonsplit multiplicative $4$ $$185 = 5 \cdot 37$$
$5$ split multiplicative $6$ $$74 = 2 \cdot 37$$
$11$ good $2$ $$185 = 5 \cdot 37$$
$37$ nonsplit multiplicative $38$ $$10 = 2 \cdot 5$$

Isogenies

gp: ellisomat(E)

This curve has no rational isogenies. Its isogeny class 370.c consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.1480.1 $$\Z/2\Z$$ not in database $6$ 6.0.3241792000.1 $$\Z/2\Z \oplus \Z/2\Z$$ not in database $8$ 8.2.40987901070000.3 $$\Z/3\Z$$ not in database $12$ deg 12 $$\Z/4\Z$$ not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit ord split ord ord ss ord ord ord ord ord nonsplit ord ord ord 10 0 1 4 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.