Minimal Weierstrass equation
\( y^2 = x^{3} - x^{2} - 67180 x + 10193400 \)
Mordell-Weil group structure
Torsion generators
\( \left(-315, 0\right) \)
Integral points
\( \left(-315, 0\right) \)
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 36980 \) | = | \(2^{2} \cdot 5 \cdot 43^{2}\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(-25285452196000000 \) | = | \(-1 \cdot 2^{8} \cdot 5^{6} \cdot 43^{6} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( -\frac{20720464}{15625} \) | = | \(-1 \cdot 2^{4} \cdot 5^{-6} \cdot 109^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(0\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(1\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(0.346806941554\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 36 \) = \( 3\cdot( 2 \cdot 3 )\cdot2 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(2\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 36980.2.a.a
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 231336 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 3.12126247399 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \( IV^{*} \) | Additive | -1 | 2 | 8 | 0 |
\(5\) | \(6\) | \( I_{6} \) | Split multiplicative | -1 | 1 | 6 | 6 |
\(43\) | \(2\) | \( I_0^{*} \) | Additive | -1 | 2 | 6 | 0 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X10.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 3 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right)$ and has index 6.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
\(3\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 43 |
---|---|---|---|---|
Reduction type | add | ordinary | split | add |
$\lambda$-invariant(s) | - | 2 | 1 | - |
$\mu$-invariant(s) | - | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class 36980a
consists of 4 curves linked by isogenies of
degrees dividing 6.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{129}) \) | \(\Z/6\Z\) | Not in database |
\(\Q(\sqrt{-1}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database | |
4 | \(\Q(i, \sqrt{129})\) | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
4.2.739600.1 | \(\Z/4\Z\) | Not in database | |
6 | 6.0.927369648.3 | \(\Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.