Properties

Label 369600hl
Number of curves $6$
Conductor $369600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("hl1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 369600hl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
369600.hl6 369600hl1 [0, -1, 0, 55967, 1480359937] [2] 11796480 \(\Gamma_0(N)\)-optimal
369600.hl5 369600hl2 [0, -1, 0, -19152033, 31694543937] [2, 2] 23592960  
369600.hl2 369600hl3 [0, -1, 0, -304920033, 2049502391937] [2, 2] 47185920  
369600.hl4 369600hl4 [0, -1, 0, -40712033, -52712856063] [2] 47185920  
369600.hl1 369600hl5 [0, -1, 0, -4878720033, 131163302591937] [2] 94371840  
369600.hl3 369600hl6 [0, -1, 0, -303408033, 2070832175937] [2] 94371840  

Rank

sage: E.rank()
 

The elliptic curves in class 369600hl have rank \(1\).

Complex multiplication

The elliptic curves in class 369600hl do not have complex multiplication.

Modular form 369600.2.a.hl

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{7} + q^{9} - q^{11} - 2q^{13} - 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.