Properties

Label 369600.tc
Number of curves $4$
Conductor $369600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("tc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 369600.tc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.tc1 369600tc3 \([0, 1, 0, -1629469633, 22422540588863]\) \(233632133015204766393938/29145526885986328125\) \(59690039062500000000000000000\) \([2]\) \(377487360\) \(4.2512\)  
369600.tc2 369600tc2 \([0, 1, 0, -407017633, -2797866623137]\) \(7282213870869695463556/912102595400390625\) \(933993057690000000000000000\) \([2, 2]\) \(188743680\) \(3.9047\)  
369600.tc3 369600tc1 \([0, 1, 0, -393895633, -3009065213137]\) \(26401417552259125806544/507547744790625\) \(129932222666400000000000\) \([2]\) \(94371840\) \(3.5581\) \(\Gamma_0(N)\)-optimal
369600.tc4 369600tc4 \([0, 1, 0, 605482367, -14501354123137]\) \(11986661998777424518222/51295853620928503125\) \(-105053908215661574400000000000\) \([2]\) \(377487360\) \(4.2512\)  

Rank

sage: E.rank()
 

The elliptic curves in class 369600.tc have rank \(0\).

Complex multiplication

The elliptic curves in class 369600.tc do not have complex multiplication.

Modular form 369600.2.a.tc

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} - q^{11} + 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.