Properties

Label 369600.s
Number of curves $2$
Conductor $369600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 369600.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.s1 369600s1 \([0, -1, 0, -256033, -33668063]\) \(1812647208964/568346625\) \(581986944000000000\) \([2]\) \(4423680\) \(2.1130\) \(\Gamma_0(N)\)-optimal
369600.s2 369600s2 \([0, -1, 0, 715967, -229040063]\) \(19818563370478/22511671875\) \(-46103904000000000000\) \([2]\) \(8847360\) \(2.4595\)  

Rank

sage: E.rank()
 

The elliptic curves in class 369600.s have rank \(1\).

Complex multiplication

The elliptic curves in class 369600.s do not have complex multiplication.

Modular form 369600.2.a.s

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} - q^{11} - 4 q^{13} - 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.