# Properties

 Label 369600.rr4 Conductor $369600$ Discriminant $2.752\times 10^{27}$ j-invariant $$\frac{19170300594578891358373921}{671785075055001600}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z \oplus \Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2=x^3+x^2-8921168033x-324318352667937$$ y^2=x^3+x^2-8921168033x-324318352667937 (homogenize, simplify) $$y^2z=x^3+x^2z-8921168033xz^2-324318352667937z^3$$ y^2z=x^3+x^2z-8921168033xz^2-324318352667937z^3 (dehomogenize, simplify) $$y^2=x^3-722614610700x-236425911251094000$$ y^2=x^3-722614610700x-236425911251094000 (homogenize, minimize)

sage: E = EllipticCurve([0, 1, 0, -8921168033, -324318352667937])

gp: E = ellinit([0, 1, 0, -8921168033, -324318352667937])

magma: E := EllipticCurve([0, 1, 0, -8921168033, -324318352667937]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z/{2}\Z \oplus \Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-54777, 0\right)$$, $$\left(-54287, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-54777, 0\right)$$, $$\left(-54287, 0\right)$$, $$\left(109063, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$369600$$ = $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $2751631667425286553600000000$ = $2^{38} \cdot 3^{6} \cdot 5^{8} \cdot 7^{4} \cdot 11^{4}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{19170300594578891358373921}{671785075055001600}$$ = $2^{-20} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{-4} \cdot 11^{-4} \cdot 267635041^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $4.3552981285292123064138596816\dots$ Stable Faltings height: $2.5108584014722441549876318328\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $0.015534419823715364800984527538\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $768$  = $2^{2}\cdot( 2 \cdot 3 )\cdot2^{2}\cdot2^{2}\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $4$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $0.74565215153833751044725732184$

## Modular invariants

Modular form 369600.2.a.rr

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{7} + q^{9} - q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 424673280 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{28}^{*}$ Additive -1 6 38 20
$3$ $6$ $I_{6}$ Split multiplicative -1 1 6 6
$5$ $4$ $I_{2}^{*}$ Additive 1 2 8 2
$7$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$11$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 8.24.0.18

The image of the adelic Galois representation has level $840$, index $192$, and genus $1$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 369600.rr consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-10})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{-6}, \sqrt{10})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{6}, \sqrt{10})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.3317760000.5 $$\Z/4\Z \oplus \Z/4\Z$$ Not in database $8$ 8.4.10929447936000000.31 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ 8.0.497871360000.12 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ 8.0.98344960000.1 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \oplus \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.