Properties

Label 369600.ra
Number of curves $2$
Conductor $369600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("ra1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 369600.ra

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.ra1 369600ra2 \([0, 1, 0, -1812833, -939813537]\) \(10294787169064/3361743\) \(215151552000000000\) \([2]\) \(5898240\) \(2.2996\)  
369600.ra2 369600ra1 \([0, 1, 0, -97833, -18858537]\) \(-12944768192/11647251\) \(-93178008000000000\) \([2]\) \(2949120\) \(1.9530\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 369600.ra have rank \(0\).

Complex multiplication

The elliptic curves in class 369600.ra do not have complex multiplication.

Modular form 369600.2.a.ra

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} - q^{11} - 6 q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.