Minimal Weierstrass equation
\(y^2=x^3+x^2-27774593x-48029603457\)
Mordell-Weil group structure
$\Z\times \Z/{2}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(-2427, 71340\right)\)
|
$\hat{h}(P)$ | ≈ | $6.8010137110704829670270165444$ |
Torsion generators
\( \left(5983, 0\right) \)
Integral points
\((-2427,\pm 71340)\), \( \left(5983, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 369600 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $375098459607546200064000 $ | = | $2^{38} \cdot 3^{10} \cdot 5^{3} \cdot 7^{5} \cdot 11 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{72313087342699809269}{11447096545640448} \) | = | $2^{-20} \cdot 3^{-10} \cdot 7^{-5} \cdot 11^{-1} \cdot 149^{3} \cdot 27961^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $3.2461493054106191070324265870\dots$ | ||
Stable Faltings height: | $1.8040690564621760492563885715\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $6.8010137110704829670270165444\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.066466378049373054442577858905\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 80 $ = $ 2^{2}\cdot( 2 \cdot 5 )\cdot2\cdot1\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 9.0407749687796065150076131564 $ |
Modular invariants
Modular form 369600.2.a.ov
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 36864000 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{28}^{*}$ | Additive | -1 | 6 | 38 | 20 |
$3$ | $10$ | $I_{10}$ | Split multiplicative | -1 | 1 | 10 | 10 |
$5$ | $2$ | $III$ | Additive | -1 | 2 | 3 | 0 |
$7$ | $1$ | $I_{5}$ | Non-split multiplicative | 1 | 1 | 5 | 5 |
$11$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B.4.1 | 5.12.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 369600.ov
consists of 4 curves linked by isogenies of
degrees dividing 10.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{385}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/10\Z\) | Not in database |
$4$ | 4.4.22176000.4 | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{385})\) | \(\Z/2\Z \times \Z/10\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/20\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/20\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/20\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/30\Z\) | Not in database |
$20$ | 20.4.1505680748169532571648000000000000000.1 | \(\Z/10\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.