Properties

Label 369600.ok
Number of curves $2$
Conductor $369600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("ok1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 369600.ok

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.ok1 369600ok2 \([0, 1, 0, -51633, -4525137]\) \(59466754384/121275\) \(31046400000000\) \([2]\) \(1474560\) \(1.4754\)  
369600.ok2 369600ok1 \([0, 1, 0, -2133, -119637]\) \(-67108864/343035\) \(-5488560000000\) \([2]\) \(737280\) \(1.1288\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 369600.ok have rank \(0\).

Complex multiplication

The elliptic curves in class 369600.ok do not have complex multiplication.

Modular form 369600.2.a.ok

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + q^{11} - 6q^{13} - 2q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.