# Properties

 Label 369600.ok Number of curves $2$ Conductor $369600$ CM no Rank $0$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("ok1")

sage: E.isogeny_class()

## Elliptic curves in class 369600.ok

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.ok1 369600ok2 $$[0, 1, 0, -51633, -4525137]$$ $$59466754384/121275$$ $$31046400000000$$ $$$$ $$1474560$$ $$1.4754$$
369600.ok2 369600ok1 $$[0, 1, 0, -2133, -119637]$$ $$-67108864/343035$$ $$-5488560000000$$ $$$$ $$737280$$ $$1.1288$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 369600.ok have rank $$0$$.

## Complex multiplication

The elliptic curves in class 369600.ok do not have complex multiplication.

## Modular form 369600.2.a.ok

sage: E.q_eigenform(10)

$$q + q^{3} - q^{7} + q^{9} + q^{11} - 6 q^{13} - 2 q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 