Show commands for:
SageMath
sage: E = EllipticCurve("hl1")
sage: E.isogeny_class()
Elliptic curves in class 369600.hl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
369600.hl1 | 369600hl5 | [0, -1, 0, -4878720033, 131163302591937] | [2] | 94371840 | |
369600.hl2 | 369600hl3 | [0, -1, 0, -304920033, 2049502391937] | [2, 2] | 47185920 | |
369600.hl3 | 369600hl6 | [0, -1, 0, -303408033, 2070832175937] | [2] | 94371840 | |
369600.hl4 | 369600hl4 | [0, -1, 0, -40712033, -52712856063] | [2] | 47185920 | |
369600.hl5 | 369600hl2 | [0, -1, 0, -19152033, 31694543937] | [2, 2] | 23592960 | |
369600.hl6 | 369600hl1 | [0, -1, 0, 55967, 1480359937] | [2] | 11796480 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 369600.hl have rank \(1\).
Complex multiplication
The elliptic curves in class 369600.hl do not have complex multiplication.Modular form 369600.2.a.hl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 4 & 8 \\ 2 & 1 & 2 & 4 & 2 & 4 \\ 4 & 2 & 1 & 8 & 4 & 8 \\ 8 & 4 & 8 & 1 & 2 & 4 \\ 4 & 2 & 4 & 2 & 1 & 2 \\ 8 & 4 & 8 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.