Properties

Label 368.a
Number of curves $1$
Conductor $368$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 368.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
368.a1 368g1 \([0, 0, 0, -55, 157]\) \(-1149984000/23\) \(-368\) \([]\) \(48\) \(-0.38686\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 368.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 368.a do not have complex multiplication.

Modular form 368.2.a.a

sage: E.q_eigenform(10)
 
\(q - 3 q^{3} + 2 q^{7} + 6 q^{9} - 5 q^{13} - 6 q^{17} - 6 q^{19} + O(q^{20})\)  Toggle raw display