Show commands:
SageMath
E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 367770.bl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
367770.bl1 | 367770bl2 | \([1, 0, 0, -46440338855, -3852047375777835]\) | \(11076686187617538707593043636859463921/16864347774313526578260\) | \(16864347774313526578260\) | \([]\) | \(613119360\) | \(4.4243\) | |
367770.bl2 | 367770bl1 | \([1, 0, 0, -57317555, 127028237025]\) | \(20825080158898735138027980721/5080200043046319360000000\) | \(5080200043046319360000000\) | \([7]\) | \(87588480\) | \(3.4513\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 367770.bl have rank \(1\).
Complex multiplication
The elliptic curves in class 367770.bl do not have complex multiplication.Modular form 367770.2.a.bl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.