Properties

Label 3675.m
Number of curves $1$
Conductor $3675$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3675.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3675.m1 3675o1 \([1, 0, 1, -9826, -1187077]\) \(-46585/243\) \(-547205719921875\) \([]\) \(12600\) \(1.5122\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3675.m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3675.m do not have complex multiplication.

Modular form 3675.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{6} - 3q^{8} + q^{9} - q^{12} - 3q^{13} - q^{16} + 2q^{17} + q^{18} + q^{19} + O(q^{20})\)  Toggle raw display