Properties

Label 366912fn
Number of curves $1$
Conductor $366912$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fn1")
 
E.isogeny_class()
 

Elliptic curves in class 366912fn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
366912.fn1 366912fn1 \([0, 0, 0, -212268, 43261904]\) \(-47045881/8736\) \(-196412134668632064\) \([]\) \(2949120\) \(2.0427\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 366912fn1 has rank \(0\).

Complex multiplication

The elliptic curves in class 366912fn do not have complex multiplication.

Modular form 366912.2.a.fn

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{11} - q^{13} + 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display