Show commands:
SageMath
E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 365690.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
365690.n1 | 365690n2 | \([1, -1, 1, -802936767, -8852366332401]\) | \(-57248979119863765781565932014401/724755414877958811216956840\) | \(-724755414877958811216956840\) | \([]\) | \(474360768\) | \(3.9638\) | |
365690.n2 | 365690n1 | \([1, -1, 1, -2336967, 8297239359]\) | \(-1411501283414687166603201/28919656992112640000000\) | \(-28919656992112640000000\) | \([7]\) | \(67765824\) | \(2.9908\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 365690.n have rank \(1\).
Complex multiplication
The elliptic curves in class 365690.n do not have complex multiplication.Modular form 365690.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.