# Properties

 Label 3648.h1 Conductor $3648$ Discriminant $-1426233024$ j-invariant $$-\frac{9358714467168256}{22284891}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -17561, -889893])

gp: E = ellinit([0, -1, 0, -17561, -889893])

magma: E := EllipticCurve([0, -1, 0, -17561, -889893]);

$$y^2=x^3-x^2-17561x-889893$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$3648$$ = $2^{6} \cdot 3 \cdot 19$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-1426233024$ = $-1 \cdot 2^{6} \cdot 3^{2} \cdot 19^{5}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{9358714467168256}{22284891}$$ = $-1 \cdot 2^{12} \cdot 3^{-2} \cdot 19^{-5} \cdot 13171^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.99798084150840114227235949108\dots$ Stable Faltings height: $0.65140725122842848756374343035\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.20736245474565607907749575998\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $10$  = $1\cdot2\cdot5$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.0736245474565607907749575997874900190$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} - q^{5} + 3 q^{7} + q^{9} + 3 q^{11} + 6 q^{13} + q^{15} + 3 q^{17} + q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 4800 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $II$ Additive 1 6 6 0
$3$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$19$ $5$ $I_{5}$ Split multiplicative -1 1 5 5

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$5$ 5B.4.2 5.12.0.2

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add nonsplit ordinary ordinary ordinary ordinary ordinary split ordinary ordinary ordinary ordinary ordinary ordinary ordinary - 0 0 0 0 0 0 1 0 0 0 0 0 2 0 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 5.
Its isogeny class 3648.h consists of 2 curves linked by isogenies of degree 5.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.76.1 $$\Z/2\Z$$ Not in database $4$ 4.0.8000.2 $$\Z/5\Z$$ Not in database $6$ 6.0.109744.2 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ Deg 8 $$\Z/3\Z$$ Not in database $10$ 10.2.2099520000000000.23 $$\Z/5\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/10\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.