Properties

Label 3648.c
Number of curves $4$
Conductor $3648$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3648.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3648.c1 3648v3 \([0, -1, 0, -5603329, 5107121569]\) \(74220219816682217473/16416\) \(4303355904\) \([4]\) \(46080\) \(2.1412\)  
3648.c2 3648v2 \([0, -1, 0, -350209, 79885729]\) \(18120364883707393/269485056\) \(70643890520064\) \([2, 2]\) \(23040\) \(1.7946\)  
3648.c3 3648v4 \([0, -1, 0, -339969, 84766113]\) \(-16576888679672833/2216253521952\) \(-580977563258585088\) \([2]\) \(46080\) \(2.1412\)  
3648.c4 3648v1 \([0, -1, 0, -22529, 1176993]\) \(4824238966273/537919488\) \(141012366262272\) \([2]\) \(11520\) \(1.4480\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3648.c have rank \(0\).

Complex multiplication

The elliptic curves in class 3648.c do not have complex multiplication.

Modular form 3648.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2q^{5} + q^{9} - 4q^{11} - 2q^{13} + 2q^{15} - 6q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.