Learn more

Refine search


Results (1-50 of 78 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
3648.a1 3648.a \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $1.113314158$ $[0, -1, 0, -65, -159]$ \(y^2=x^3-x^2-65x-159\)
3648.a2 3648.a \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.556657079$ $[0, -1, 0, 95, -959]$ \(y^2=x^3-x^2+95x-959\)
3648.b1 3648.b \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $2.284195344$ $[0, -1, 0, -287, -1779]$ \(y^2=x^3-x^2-287x-1779\)
3648.c1 3648.c \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -5603329, 5107121569]$ \(y^2=x^3-x^2-5603329x+5107121569\)
3648.c2 3648.c \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -350209, 79885729]$ \(y^2=x^3-x^2-350209x+79885729\)
3648.c3 3648.c \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -339969, 84766113]$ \(y^2=x^3-x^2-339969x+84766113\)
3648.c4 3648.c \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -22529, 1176993]$ \(y^2=x^3-x^2-22529x+1176993\)
3648.d1 3648.d \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -5089, 137569]$ \(y^2=x^3-x^2-5089x+137569\)
3648.d2 3648.d \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -769, -4991]$ \(y^2=x^3-x^2-769x-4991\)
3648.d3 3648.d \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -689, -6735]$ \(y^2=x^3-x^2-689x-6735\)
3648.d4 3648.d \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 2271, -37215]$ \(y^2=x^3-x^2+2271x-37215\)
3648.e1 3648.e \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -369, -2511]$ \(y^2=x^3-x^2-369x-2511\)
3648.e2 3648.e \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 11, -155]$ \(y^2=x^3-x^2+11x-155\)
3648.f1 3648.f \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -24, 54]$ \(y^2=x^3-x^2-24x+54\)
3648.f2 3648.f \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -9, 105]$ \(y^2=x^3-x^2-9x+105\)
3648.g1 3648.g \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.583558816$ $[0, -1, 0, 219, -963]$ \(y^2=x^3-x^2+219x-963\)
3648.h1 3648.h \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -17561, -889893]$ \(y^2=x^3-x^2-17561x-889893\)
3648.h2 3648.h \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 79, -333]$ \(y^2=x^3-x^2+79x-333\)
3648.i1 3648.i \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $7.399886169$ $[0, -1, 0, -27393, -1735935]$ \(y^2=x^3-x^2-27393x-1735935\)
3648.i2 3648.i \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $3.699943084$ $[0, -1, 0, -26753, -1821567]$ \(y^2=x^3-x^2-26753x-1821567\)
3648.i3 3648.i \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $2.466628723$ $[0, -1, 0, -513, 513]$ \(y^2=x^3-x^2-513x+513\)
3648.i4 3648.i \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $1.233314361$ $[0, -1, 0, 2047, 2049]$ \(y^2=x^3-x^2+2047x+2049\)
3648.j1 3648.j \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $2.080881992$ $[0, -1, 0, -6113, 185985]$ \(y^2=x^3-x^2-6113x+185985\)
3648.j2 3648.j \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $1.040440996$ $[0, -1, 0, -5473, 225793]$ \(y^2=x^3-x^2-5473x+225793\)
3648.k1 3648.k \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.959668299$ $[0, -1, 0, -73, 265]$ \(y^2=x^3-x^2-73x+265\)
3648.k2 3648.k \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.479834149$ $[0, -1, 0, -33, 513]$ \(y^2=x^3-x^2-33x+513\)
3648.l1 3648.l \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.196950945$ $[0, -1, 0, -375, 3933]$ \(y^2=x^3-x^2-375x+3933\)
3648.m1 3648.m \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.680980560$ $[0, -1, 0, 5, 13]$ \(y^2=x^3-x^2+5x+13\)
3648.n1 3648.n \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -7297, -237503]$ \(y^2=x^3-x^2-7297x-237503\)
3648.n2 3648.n \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -457, -3575]$ \(y^2=x^3-x^2-457x-3575\)
3648.n3 3648.n \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -97, -9407]$ \(y^2=x^3-x^2-97x-9407\)
3648.n4 3648.n \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -52, 70]$ \(y^2=x^3-x^2-52x+70\)
3648.o1 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6497, 203745]$ \(y^2=x^3-x^2-6497x+203745\)
3648.o2 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -417, 3105]$ \(y^2=x^3-x^2-417x+3105\)
3648.o3 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -97, -287]$ \(y^2=x^3-x^2-97x-287\)
3648.o4 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 543, 14433]$ \(y^2=x^3-x^2+543x+14433\)
3648.p1 3648.p \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.992248281$ $[0, -1, 0, -229, 1597]$ \(y^2=x^3-x^2-229x+1597\)
3648.q1 3648.q \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.399747014$ $[0, -1, 0, 11, -83]$ \(y^2=x^3-x^2+11x-83\)
3648.r1 3648.r \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -9, -9]$ \(y^2=x^3-x^2-9x-9\)
3648.s1 3648.s \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -65, 159]$ \(y^2=x^3+x^2-65x+159\)
3648.s2 3648.s \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 95, 959]$ \(y^2=x^3+x^2+95x+959\)
3648.t1 3648.t \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.265066668$ $[0, 1, 0, -287, 1779]$ \(y^2=x^3+x^2-287x+1779\)
3648.u1 3648.u \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -24, -54]$ \(y^2=x^3+x^2-24x-54\)
3648.u2 3648.u \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -9, -105]$ \(y^2=x^3+x^2-9x-105\)
3648.v1 3648.v \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.352782881$ $[0, 1, 0, -369, 2511]$ \(y^2=x^3+x^2-369x+2511\)
3648.v2 3648.v \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.705565763$ $[0, 1, 0, 11, 155]$ \(y^2=x^3+x^2+11x+155\)
3648.w1 3648.w \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $2.196137696$ $[0, 1, 0, -5089, -137569]$ \(y^2=x^3+x^2-5089x-137569\)
3648.w2 3648.w \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.098068848$ $[0, 1, 0, -769, 4991]$ \(y^2=x^3+x^2-769x+4991\)
3648.w3 3648.w \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.549034424$ $[0, 1, 0, -689, 6735]$ \(y^2=x^3+x^2-689x+6735\)
3648.w4 3648.w \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/4\Z$ $2.196137696$ $[0, 1, 0, 2271, 37215]$ \(y^2=x^3+x^2+2271x+37215\)
Next   Download to