Minimal Weierstrass equation
\(y^2+xy+y=x^3+x^2-2508138x+988967031\)
Mordell-Weil group structure
$\Z\times \Z/{2}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(-1375, 43587\right)\)
|
$\hat{h}(P)$ | ≈ | $1.9950807527500084761307604360$ |
Torsion generators
\( \left(425, -213\right) \)
Integral points
\( \left(-1375, 43587\right) \), \( \left(-1375, -42213\right) \), \( \left(425, -213\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 364650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $586383908395428000000 $ | = | $2^{8} \cdot 3^{3} \cdot 5^{6} \cdot 11^{3} \cdot 13^{2} \cdot 17^{6} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{111675519439697265625}{37528570137307392} \) | = | $2^{-8} \cdot 3^{-3} \cdot 5^{15} \cdot 11^{-3} \cdot 13^{-2} \cdot 17^{-6} \cdot 23^{3} \cdot 67^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $2.6874786314021716058980178188\dots$ | ||
Stable Faltings height: | $1.8827596751851214185976381522\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.9950807527500084761307604360\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.15033834765539044294528161562\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 192 $ = $ 2^{3}\cdot1\cdot2\cdot3\cdot2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 14.396982902760424166108227570 $ |
Modular invariants
Modular form 364650.2.a.ey
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 21897216 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 6 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $8$ | $I_{8}$ | Split multiplicative | -1 | 1 | 8 | 8 |
$3$ | $1$ | $I_{3}$ | Non-split multiplicative | 1 | 1 | 3 | 3 |
$5$ | $2$ | $I_0^{*}$ | Additive | 1 | 2 | 6 | 0 |
$11$ | $3$ | $I_{3}$ | Split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$17$ | $2$ | $I_{6}$ | Non-split multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 364650ey
consists of 4 curves linked by isogenies of
degrees dividing 6.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/6\Z\) | Not in database |
$4$ | 4.0.3814800.1 | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{33})\) | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.0.1542294000.6 | \(\Z/6\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.15847889254560000.18 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.14552699040000.16 | \(\Z/12\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$18$ | 18.6.153551386690154936511089208225213439036648358410324500000000.1 | \(\Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.