Learn more

Refine search


Results (1-50 of 325 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
364650.a1 364650.a \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.024522397$ $[1, 1, 0, -935, -21675]$ \(y^2+xy=x^3+x^2-935x-21675\)
364650.b1 364650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $73.72946330$ $[1, 1, 0, -290425831625, -60242342153812875]$ \(y^2+xy=x^3+x^2-290425831625x-60242342153812875\)
364650.b2 364650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $36.86473165$ $[1, 1, 0, -18151621625, -941291490022875]$ \(y^2+xy=x^3+x^2-18151621625x-941291490022875\)
364650.b3 364650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $18.43236582$ $[1, 1, 0, -17975203625, -960484533496875]$ \(y^2+xy=x^3+x^2-17975203625x-960484533496875\)
364650.b4 364650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $18.43236582$ $[1, 1, 0, -1145509625, -14407367686875]$ \(y^2+xy=x^3+x^2-1145509625x-14407367686875\)
364650.c1 364650.c \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $0.603323977$ $[1, 1, 0, -3795, 64125]$ \(y^2+xy=x^3+x^2-3795x+64125\)
364650.c2 364650.c \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $2.413295909$ $[1, 1, 0, 605, 6925]$ \(y^2+xy=x^3+x^2+605x+6925\)
364650.d1 364650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -221540150, -1269281301750]$ \(y^2+xy=x^3+x^2-221540150x-1269281301750\)
364650.d2 364650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -34879650, 52529298750]$ \(y^2+xy=x^3+x^2-34879650x+52529298750\)
364650.d3 364650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -13965900, -19476742500]$ \(y^2+xy=x^3+x^2-13965900x-19476742500\)
364650.d4 364650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 314600, -1069178000]$ \(y^2+xy=x^3+x^2+314600x-1069178000\)
364650.e1 364650.e \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.304615782$ $[1, 1, 0, -125400, 270072000]$ \(y^2+xy=x^3+x^2-125400x+270072000\)
364650.f1 364650.f \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\mathsf{trivial}$ $0.284313197$ $[1, 1, 0, 404800, 104544000]$ \(y^2+xy=x^3+x^2+404800x+104544000\)
364650.g1 364650.g \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $3.801390304$ $[1, 1, 0, -164775, 26515125]$ \(y^2+xy=x^3+x^2-164775x+26515125\)
364650.g2 364650.g \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $11.40417091$ $[1, 1, 0, 804225, 85318125]$ \(y^2+xy=x^3+x^2+804225x+85318125\)
364650.h1 364650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.200315632$ $[1, 1, 0, -2745, -56475]$ \(y^2+xy=x^3+x^2-2745x-56475\)
364650.h2 364650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.400631265$ $[1, 1, 0, -2145, -81075]$ \(y^2+xy=x^3+x^2-2145x-81075\)
364650.i1 364650.i \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $4.715493993$ $[1, 1, 0, -9375, -349125]$ \(y^2+xy=x^3+x^2-9375x-349125\)
364650.i2 364650.i \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $1.178873498$ $[1, 1, 0, -1125, 5625]$ \(y^2+xy=x^3+x^2-1125x+5625\)
364650.j1 364650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $8.487263427$ $[1, 1, 0, -7130200, -6291896000]$ \(y^2+xy=x^3+x^2-7130200x-6291896000\)
364650.j2 364650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $16.97452685$ $[1, 1, 0, 12309800, -34577096000]$ \(y^2+xy=x^3+x^2+12309800x-34577096000\)
364650.k1 364650.k \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.782173580$ $[1, 1, 0, -22685875, 41578880875]$ \(y^2+xy=x^3+x^2-22685875x+41578880875\)
364650.k2 364650.k \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $5.564347161$ $[1, 1, 0, -1362625, 702210625]$ \(y^2+xy=x^3+x^2-1362625x+702210625\)
364650.l1 364650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.330457573$ $[1, 1, 0, -5653325, -19267875]$ \(y^2+xy=x^3+x^2-5653325x-19267875\)
364650.l2 364650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $8.660915146$ $[1, 1, 0, -3893325, -2949667875]$ \(y^2+xy=x^3+x^2-3893325x-2949667875\)
364650.m1 364650.m \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $2.736409873$ $[1, 1, 0, -18980, -1014000]$ \(y^2+xy=x^3+x^2-18980x-1014000\)
364650.m2 364650.m \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $2.736409873$ $[1, 1, 0, -1380, -10800]$ \(y^2+xy=x^3+x^2-1380x-10800\)
364650.n1 364650.n \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.764824636$ $[1, 1, 0, -500450, -103202460]$ \(y^2+xy=x^3+x^2-500450x-103202460\)
364650.n2 364650.n \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.254941545$ $[1, 1, 0, -170450, 27004980]$ \(y^2+xy=x^3+x^2-170450x+27004980\)
364650.o1 364650.o \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -11442775, 12983255125]$ \(y^2+xy=x^3+x^2-11442775x+12983255125\)
364650.o2 364650.o \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2994775, -1792296875]$ \(y^2+xy=x^3+x^2-2994775x-1792296875\)
364650.p1 364650.p \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\mathsf{trivial}$ $4.233948701$ $[1, 1, 0, -410, -5100]$ \(y^2+xy=x^3+x^2-410x-5100\)
364650.q1 364650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $203.0565895$ $[1, 1, 0, -15877950124875, -24329681454238621875]$ \(y^2+xy=x^3+x^2-15877950124875x-24329681454238621875\)
364650.q2 364650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $25.38207368$ $[1, 1, 0, -11096407350875, 14227268256867268125]$ \(y^2+xy=x^3+x^2-11096407350875x+14227268256867268125\)
364650.q3 364650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $101.5282947$ $[1, 1, 0, -1241313142875, -174736986385147875]$ \(y^2+xy=x^3+x^2-1241313142875x-174736986385147875\)
364650.q4 364650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $50.76414737$ $[1, 1, 0, -695227990875, 221154543664228125]$ \(y^2+xy=x^3+x^2-695227990875x+221154543664228125\)
364650.q5 364650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $25.38207368$ $[1, 1, 0, -11023958875, 8495035866212125]$ \(y^2+xy=x^3+x^2-11023958875x+8495035866212125\)
364650.q6 364650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $203.0565895$ $[1, 1, 0, 4657961407125, -1356839519988697875]$ \(y^2+xy=x^3+x^2+4657961407125x-1356839519988697875\)
364650.r1 364650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $12.27438503$ $[1, 1, 0, -28015650, -28590266250]$ \(y^2+xy=x^3+x^2-28015650x-28590266250\)
364650.r2 364650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $3.068596259$ $[1, 1, 0, -13536900, 18856597500]$ \(y^2+xy=x^3+x^2-13536900x+18856597500\)
364650.r3 364650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $3.068596259$ $[1, 1, 0, -13476400, 19036222000]$ \(y^2+xy=x^3+x^2-13476400x+19036222000\)
364650.r4 364650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $12.27438503$ $[1, 1, 0, -26150, 54808703250]$ \(y^2+xy=x^3+x^2-26150x+54808703250\)
364650.s1 364650.s \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $5.530063706$ $[1, 1, 0, -280500, -31950000]$ \(y^2+xy=x^3+x^2-280500x-31950000\)
364650.s2 364650.s \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $22.12025482$ $[1, 1, 0, 907500, -230346000]$ \(y^2+xy=x^3+x^2+907500x-230346000\)
364650.t1 364650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -229312859750, -42265565963263500]$ \(y^2+xy=x^3+x^2-229312859750x-42265565963263500\)
364650.t2 364650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -14730359750, -621754770763500]$ \(y^2+xy=x^3+x^2-14730359750x-621754770763500\)
364650.t3 364650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -3439607750, 67127881012500]$ \(y^2+xy=x^3+x^2-3439607750x+67127881012500\)
364650.t4 364650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3308535750, 73245928756500]$ \(y^2+xy=x^3+x^2-3308535750x+73245928756500\)
364650.t5 364650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 5753992250, 364458098612500]$ \(y^2+xy=x^3+x^2+5753992250x+364458098612500\)
364650.t6 364650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 19200108250, -3066207476887500]$ \(y^2+xy=x^3+x^2+19200108250x-3066207476887500\)
Next   Download to