Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
364650.a1 |
364650a1 |
364650.a |
364650a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 13 \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.024522397$ |
$1$ |
|
$4$ |
$729600$ |
$0.831938$ |
$-724392740141/1146576288$ |
$[1, 1, 0, -935, -21675]$ |
\(y^2+xy=x^3+x^2-935x-21675\) |
364650.b1 |
364650b4 |
364650.b |
364650b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{7} \cdot 11^{8} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.10 |
2B |
$73.72946330$ |
$1$ |
|
$0$ |
$1528823808$ |
$4.797409$ |
$173384156893208913680898166749513361/466915159846072080$ |
$[1, 1, 0, -290425831625, -60242342153812875]$ |
\(y^2+xy=x^3+x^2-290425831625x-60242342153812875\) |
364650.b2 |
364650b2 |
364650.b |
364650b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{12} \cdot 5^{8} \cdot 11^{4} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.4 |
2Cs |
$36.86473165$ |
$1$ |
|
$2$ |
$764411904$ |
$4.450836$ |
$42330166443562126960455979919761/69464630166853628678400$ |
$[1, 1, 0, -18151621625, -941291490022875]$ |
\(y^2+xy=x^3+x^2-18151621625x-941291490022875\) |
364650.b3 |
364650b3 |
364650.b |
364650b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{10} \cdot 11^{2} \cdot 13^{12} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.9 |
2B |
$18.43236582$ |
$1$ |
|
$0$ |
$1528823808$ |
$4.797409$ |
$-41107885916860358643135963073681/1716440731291073126286090000$ |
$[1, 1, 0, -17975203625, -960484533496875]$ |
\(y^2+xy=x^3+x^2-17975203625x-960484533496875\) |
364650.b4 |
364650b1 |
364650.b |
364650b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{16} \cdot 3^{24} \cdot 5^{7} \cdot 11^{2} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.10 |
2B |
$18.43236582$ |
$1$ |
|
$1$ |
$382205952$ |
$4.104263$ |
$10638978093366640576603658641/418238874164098875064320$ |
$[1, 1, 0, -1145509625, -14407367686875]$ |
\(y^2+xy=x^3+x^2-1145509625x-14407367686875\) |
364650.c1 |
364650c2 |
364650.c |
364650c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 11 \cdot 13^{4} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.603323977$ |
$1$ |
|
$26$ |
$868352$ |
$1.051544$ |
$48375764105453/13074540336$ |
$[1, 1, 0, -3795, 64125]$ |
\(y^2+xy=x^3+x^2-3795x+64125\) |
364650.c2 |
364650c1 |
364650.c |
364650c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \cdot 11^{2} \cdot 13^{2} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.413295909$ |
$1$ |
|
$15$ |
$434176$ |
$0.704971$ |
$195414916627/266982144$ |
$[1, 1, 0, 605, 6925]$ |
\(y^2+xy=x^3+x^2+605x+6925\) |
364650.d1 |
364650d4 |
364650.d |
364650d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3^{8} \cdot 5^{10} \cdot 11^{4} \cdot 13^{2} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$108527616$ |
$3.343548$ |
$76959285225914579642095969/99697498164371250$ |
$[1, 1, 0, -221540150, -1269281301750]$ |
\(y^2+xy=x^3+x^2-221540150x-1269281301750\) |
364650.d2 |
364650d3 |
364650.d |
364650d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 5^{7} \cdot 11 \cdot 13^{2} \cdot 17^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$108527616$ |
$3.343548$ |
$300344760859819078829089/97478526510911312910$ |
$[1, 1, 0, -34879650, 52529298750]$ |
\(y^2+xy=x^3+x^2-34879650x+52529298750\) |
364650.d3 |
364650d2 |
364650.d |
364650d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 5^{8} \cdot 11^{2} \cdot 13^{4} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$54263808$ |
$2.996975$ |
$19280154901730969757889/675674185355640900$ |
$[1, 1, 0, -13965900, -19476742500]$ |
\(y^2+xy=x^3+x^2-13965900x-19476742500\) |
364650.d4 |
364650d1 |
364650.d |
364650d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{2} \cdot 5^{7} \cdot 11 \cdot 13^{8} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$27131904$ |
$2.650398$ |
$220382793629361791/31740865455602160$ |
$[1, 1, 0, 314600, -1069178000]$ |
\(y^2+xy=x^3+x^2+314600x-1069178000\) |
364650.e1 |
364650e1 |
364650.e |
364650e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{7} \cdot 11^{7} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.304615782$ |
$1$ |
|
$6$ |
$11289600$ |
$2.420498$ |
$-13957309434676609/2009317524888960$ |
$[1, 1, 0, -125400, 270072000]$ |
\(y^2+xy=x^3+x^2-125400x+270072000\) |
364650.f1 |
364650f1 |
364650.f |
364650f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 11^{3} \cdot 13^{2} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.284313197$ |
$1$ |
|
$22$ |
$9400320$ |
$2.322666$ |
$18779477838616535/22915878365952$ |
$[1, 1, 0, 404800, 104544000]$ |
\(y^2+xy=x^3+x^2+404800x+104544000\) |
364650.g1 |
364650g1 |
364650.g |
364650g |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{9} \cdot 11 \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3.801390304$ |
$1$ |
|
$2$ |
$3359232$ |
$1.893152$ |
$-31665165722871409/1214021952000$ |
$[1, 1, 0, -164775, 26515125]$ |
\(y^2+xy=x^3+x^2-164775x+26515125\) |
364650.g2 |
364650g2 |
364650.g |
364650g |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3 \cdot 5^{15} \cdot 11^{3} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$11.40417091$ |
$1$ |
|
$0$ |
$10077696$ |
$2.442459$ |
$3681591091760239631/2330227453125000$ |
$[1, 1, 0, 804225, 85318125]$ |
\(y^2+xy=x^3+x^2+804225x+85318125\) |
364650.h1 |
364650h1 |
364650.h |
364650h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{3} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.200315632$ |
$1$ |
|
$9$ |
$325632$ |
$0.709150$ |
$18309982521293/15402816$ |
$[1, 1, 0, -2745, -56475]$ |
\(y^2+xy=x^3+x^2-2745x-56475\) |
364650.h2 |
364650h2 |
364650.h |
364650h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3 \cdot 5^{3} \cdot 11^{4} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.400631265$ |
$1$ |
|
$4$ |
$651264$ |
$1.055725$ |
$-8737997316173/17161945944$ |
$[1, 1, 0, -2145, -81075]$ |
\(y^2+xy=x^3+x^2-2145x-81075\) |
364650.i1 |
364650i2 |
364650.i |
364650i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3 \cdot 5^{8} \cdot 11 \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4.715493993$ |
$1$ |
|
$10$ |
$835584$ |
$1.127457$ |
$5832972054001/80587650$ |
$[1, 1, 0, -9375, -349125]$ |
\(y^2+xy=x^3+x^2-9375x-349125\) |
364650.i2 |
364650i1 |
364650.i |
364650i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{7} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.178873498$ |
$1$ |
|
$21$ |
$417792$ |
$0.780883$ |
$10091699281/4813380$ |
$[1, 1, 0, -1125, 5625]$ |
\(y^2+xy=x^3+x^2-1125x+5625\) |
364650.j1 |
364650j1 |
364650.j |
364650j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{14} \cdot 3^{10} \cdot 5^{9} \cdot 11^{4} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8.487263427$ |
$1$ |
|
$1$ |
$27955200$ |
$2.904171$ |
$20525743802277925973/3130368760037376$ |
$[1, 1, 0, -7130200, -6291896000]$ |
\(y^2+xy=x^3+x^2-7130200x-6291896000\) |
364650.j2 |
364650j2 |
364650.j |
364650j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{7} \cdot 3^{5} \cdot 5^{9} \cdot 11^{8} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16.97452685$ |
$1$ |
|
$0$ |
$55910400$ |
$3.250744$ |
$105620108359694738347/325643393533670784$ |
$[1, 1, 0, 12309800, -34577096000]$ |
\(y^2+xy=x^3+x^2+12309800x-34577096000\) |
364650.k1 |
364650k2 |
364650.k |
364650k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3^{8} \cdot 5^{8} \cdot 11^{6} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.782173580$ |
$1$ |
|
$2$ |
$22708224$ |
$2.853531$ |
$82636196626770537345841/2183420321789850$ |
$[1, 1, 0, -22685875, 41578880875]$ |
\(y^2+xy=x^3+x^2-22685875x+41578880875\) |
364650.k2 |
364650k1 |
364650.k |
364650k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{16} \cdot 5^{7} \cdot 11^{3} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5.564347161$ |
$1$ |
|
$3$ |
$11354112$ |
$2.506958$ |
$-17907429170521685521/3292181367506460$ |
$[1, 1, 0, -1362625, 702210625]$ |
\(y^2+xy=x^3+x^2-1362625x+702210625\) |
364650.l1 |
364650l2 |
364650.l |
364650l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{9} \cdot 11 \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4.330457573$ |
$1$ |
|
$4$ |
$27525120$ |
$2.922977$ |
$10230707123604316133/5920484839416576$ |
$[1, 1, 0, -5653325, -19267875]$ |
\(y^2+xy=x^3+x^2-5653325x-19267875\) |
364650.l2 |
364650l1 |
364650.l |
364650l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{9} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8.660915146$ |
$1$ |
|
$3$ |
$13762560$ |
$2.576405$ |
$3341610468915015653/11498140532736$ |
$[1, 1, 0, -3893325, -2949667875]$ |
\(y^2+xy=x^3+x^2-3893325x-2949667875\) |
364650.m1 |
364650m2 |
364650.m |
364650m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{3} \cdot 11 \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.736409873$ |
$1$ |
|
$16$ |
$884736$ |
$1.171427$ |
$6049759017137597/2785109184$ |
$[1, 1, 0, -18980, -1014000]$ |
\(y^2+xy=x^3+x^2-18980x-1014000\) |
364650.m2 |
364650m1 |
364650.m |
364650m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.736409873$ |
$1$ |
|
$13$ |
$442368$ |
$0.824854$ |
$2327783545277/985780224$ |
$[1, 1, 0, -1380, -10800]$ |
\(y^2+xy=x^3+x^2-1380x-10800\) |
364650.n1 |
364650n2 |
364650.n |
364650n |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13^{3} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.764824636$ |
$1$ |
|
$6$ |
$8584704$ |
$2.267094$ |
$554456067209509140625/137563834142543952$ |
$[1, 1, 0, -500450, -103202460]$ |
\(y^2+xy=x^3+x^2-500450x-103202460\) |
364650.n2 |
364650n1 |
364650.n |
364650n |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 11^{3} \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.254941545$ |
$1$ |
|
$6$ |
$2861568$ |
$1.717787$ |
$21906787790209140625/9401385996288$ |
$[1, 1, 0, -170450, 27004980]$ |
\(y^2+xy=x^3+x^2-170450x+27004980\) |
364650.o1 |
364650o2 |
364650.o |
364650o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3 \cdot 5^{12} \cdot 11 \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$34062336$ |
$3.017353$ |
$10604686171605110456689/1473064877856000000$ |
$[1, 1, 0, -11442775, 12983255125]$ |
\(y^2+xy=x^3+x^2-11442775x+12983255125\) |
364650.o2 |
364650o1 |
364650.o |
364650o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{9} \cdot 11^{2} \cdot 13^{3} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$17031168$ |
$2.670780$ |
$190106300204077220209/21324397805568000$ |
$[1, 1, 0, -2994775, -1792296875]$ |
\(y^2+xy=x^3+x^2-2994775x-1792296875\) |
364650.p1 |
364650p1 |
364650.p |
364650p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{9} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 13^{2} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.233948701$ |
$1$ |
|
$8$ |
$288000$ |
$0.575656$ |
$-61209566621/48542208$ |
$[1, 1, 0, -410, -5100]$ |
\(y^2+xy=x^3+x^2-410x-5100\) |
364650.q1 |
364650q6 |
364650.q |
364650q |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{5} \cdot 5^{14} \cdot 11^{6} \cdot 13^{16} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$203.0565895$ |
$1$ |
|
$0$ |
$26046627840$ |
$6.337517$ |
$28332636278699790163698668543341945468081/30435816720023658978554624568750000$ |
$[1, 1, 0, -15877950124875, -24329681454238621875]$ |
\(y^2+xy=x^3+x^2-15877950124875x-24329681454238621875\) |
364650.q2 |
364650q3 |
364650.q |
364650q |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{40} \cdot 5^{7} \cdot 11^{3} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$25.38207368$ |
$1$ |
|
$0$ |
$13023313920$ |
$5.990944$ |
$9670542997417555153739805666603463800241/1011632472308222823279605978880$ |
$[1, 1, 0, -11096407350875, 14227268256867268125]$ |
\(y^2+xy=x^3+x^2-11096407350875x+14227268256867268125\) |
364650.q3 |
364650q4 |
364650.q |
364650q |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{10} \cdot 11^{12} \cdot 13^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$101.5282947$ |
$1$ |
|
$2$ |
$13023313920$ |
$5.990944$ |
$13537789194164358932476757607878858161/6990196961633622849153431264160000$ |
$[1, 1, 0, -1241313142875, -174736986385147875]$ |
\(y^2+xy=x^3+x^2-1241313142875x-174736986385147875\) |
364650.q4 |
364650q2 |
364650.q |
364650q |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{16} \cdot 3^{20} \cdot 5^{8} \cdot 11^{6} \cdot 13^{4} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$50.76414737$ |
$1$ |
|
$2$ |
$6511656960$ |
$5.644371$ |
$2378402942216976240269041980443870641/24141832888458098359553295974400$ |
$[1, 1, 0, -695227990875, 221154543664228125]$ |
\(y^2+xy=x^3+x^2-695227990875x+221154543664228125\) |
364650.q5 |
364650q1 |
364650.q |
364650q |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{32} \cdot 3^{10} \cdot 5^{7} \cdot 11^{3} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$25.38207368$ |
$1$ |
|
$1$ |
$3255828480$ |
$5.297798$ |
$-9482360001398682199577266111921/1989750139832011668270329364480$ |
$[1, 1, 0, -11023958875, 8495035866212125]$ |
\(y^2+xy=x^3+x^2-11023958875x+8495035866212125\) |
364650.q6 |
364650q5 |
364650.q |
364650q |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{8} \cdot 11^{24} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$203.0565895$ |
$1$ |
|
$0$ |
$26046627840$ |
$6.337517$ |
$715305136889332363556605654855198869839/464850218389561926618649625559572400$ |
$[1, 1, 0, 4657961407125, -1356839519988697875]$ |
\(y^2+xy=x^3+x^2+4657961407125x-1356839519988697875\) |
364650.r1 |
364650r4 |
364650.r |
364650r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3^{4} \cdot 5^{7} \cdot 11 \cdot 13 \cdot 17^{12} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$12.27438503$ |
$1$ |
|
$6$ |
$63700992$ |
$3.305771$ |
$155634480263910149487649/67485133738323216630$ |
$[1, 1, 0, -28015650, -28590266250]$ |
\(y^2+xy=x^3+x^2-28015650x-28590266250\) |
364650.r2 |
364650r2 |
364650.r |
364650r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{8} \cdot 5^{8} \cdot 11^{2} \cdot 13^{2} \cdot 17^{6} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$3.068596259$ |
$1$ |
|
$24$ |
$31850496$ |
$2.959198$ |
$17557448303016165930049/323843840318384100$ |
$[1, 1, 0, -13536900, 18856597500]$ |
\(y^2+xy=x^3+x^2-13536900x+18856597500\) |
364650.r3 |
364650r1 |
364650.r |
364650r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{7} \cdot 11^{4} \cdot 13 \cdot 17^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3.068596259$ |
$1$ |
|
$13$ |
$15925248$ |
$2.612625$ |
$17323092146304812544769/6059487067920$ |
$[1, 1, 0, -13476400, 19036222000]$ |
\(y^2+xy=x^3+x^2-13476400x+19036222000\) |
364650.r4 |
364650r3 |
364650.r |
364650r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{16} \cdot 5^{10} \cdot 11 \cdot 13^{4} \cdot 17^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$12.27438503$ |
$1$ |
|
$6$ |
$63700992$ |
$3.305771$ |
$-126574061279329/83054457732635853750$ |
$[1, 1, 0, -26150, 54808703250]$ |
\(y^2+xy=x^3+x^2-26150x+54808703250\) |
364650.s1 |
364650s1 |
364650.s |
364650s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{11} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5.530063706$ |
$1$ |
|
$13$ |
$6451200$ |
$2.149910$ |
$156208514388252481/62381404800000$ |
$[1, 1, 0, -280500, -31950000]$ |
\(y^2+xy=x^3+x^2-280500x-31950000\) |
364650.s2 |
364650s2 |
364650.s |
364650s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{16} \cdot 11 \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$22.12025482$ |
$1$ |
|
$6$ |
$12902400$ |
$2.496487$ |
$5289843693155947199/4533055312500000$ |
$[1, 1, 0, 907500, -230346000]$ |
\(y^2+xy=x^3+x^2+907500x-230346000\) |
364650.t1 |
364650t6 |
364650.t |
364650t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3^{3} \cdot 5^{10} \cdot 11 \cdot 13^{16} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.7 |
2B |
$1$ |
$16$ |
$2$ |
$0$ |
$2076180480$ |
$5.139687$ |
$85347129192082387928749867185675361/1142294076320397505851060000$ |
$[1, 1, 0, -229312859750, -42265565963263500]$ |
\(y^2+xy=x^3+x^2-229312859750x-42265565963263500\) |
364650.t2 |
364650t4 |
364650.t |
364650t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{14} \cdot 11^{2} \cdot 13^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.15 |
2Cs |
$1$ |
$4$ |
$2$ |
$2$ |
$1038090240$ |
$4.793114$ |
$22622664067287084590070422475361/2403894445280029587600000000$ |
$[1, 1, 0, -14730359750, -621754770763500]$ |
\(y^2+xy=x^3+x^2-14730359750x-621754770763500\) |
364650.t3 |
364650t2 |
364650.t |
364650t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{20} \cdot 3^{12} \cdot 5^{10} \cdot 11^{4} \cdot 13^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.13 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$519045120$ |
$4.446541$ |
$288025170744824162562114015841/42089811414708944240640000$ |
$[1, 1, 0, -3439607750, 67127881012500]$ |
\(y^2+xy=x^3+x^2-3439607750x+67127881012500\) |
364650.t4 |
364650t1 |
364650.t |
364650t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( 2^{40} \cdot 3^{6} \cdot 5^{8} \cdot 11^{2} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.6 |
2B |
$1$ |
$1$ |
|
$1$ |
$259522560$ |
$4.099968$ |
$256336931635587146090976858721/6966078430857972940800$ |
$[1, 1, 0, -3308535750, 73245928756500]$ |
\(y^2+xy=x^3+x^2-3308535750x+73245928756500\) |
364650.t5 |
364650t3 |
364650.t |
364650t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{24} \cdot 5^{8} \cdot 11^{8} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.91 |
2B |
$1$ |
$1$ |
|
$0$ |
$1038090240$ |
$4.793114$ |
$1348377521288200270907278880159/4452738450438853168316236800$ |
$[1, 1, 0, 5753992250, 364458098612500]$ |
\(y^2+xy=x^3+x^2+5753992250x+364458098612500\) |
364650.t6 |
364650t5 |
364650.t |
364650t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{22} \cdot 11 \cdot 13^{4} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.92 |
2B |
$1$ |
$16$ |
$2$ |
$0$ |
$2076180480$ |
$5.139687$ |
$50097345876551739554894890530719/288929095004409653320312500000$ |
$[1, 1, 0, 19200108250, -3066207476887500]$ |
\(y^2+xy=x^3+x^2+19200108250x-3066207476887500\) |