# Properties

 Label 36432cl Number of curves 2 Conductor 36432 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("36432.bg1")

sage: E.isogeny_class()

## Elliptic curves in class 36432cl

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
36432.bg2 36432cl1 [0, 0, 0, -3315, -1068302]  81920 $$\Gamma_0(N)$$-optimal
36432.bg1 36432cl2 [0, 0, 0, -178275, -28746974]  163840

## Rank

sage: E.rank()

The elliptic curves in class 36432cl have rank $$1$$.

## Modular form 36432.2.a.bg

sage: E.q_eigenform(10)

$$q + 2q^{7} + q^{11} + 2q^{13} - 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 