Show commands: SageMath
Rank
The elliptic curves in class 36400cd have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 36400cd do not have complex multiplication.Modular form 36400.2.a.cd
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 36400cd
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
36400.bn3 | 36400cd1 | \([0, 0, 0, -800075, -251999750]\) | \(884984855328729/83492864000\) | \(5343543296000000000\) | \([2]\) | \(552960\) | \(2.3317\) | \(\Gamma_0(N)\)-optimal |
36400.bn2 | 36400cd2 | \([0, 0, 0, -2848075, 1568672250]\) | \(39920686684059609/6492304000000\) | \(415507456000000000000\) | \([2, 2]\) | \(1105920\) | \(2.6783\) | |
36400.bn4 | 36400cd3 | \([0, 0, 0, 5151925, 8792672250]\) | \(236293804275620391/658593925444000\) | \(-42150011228416000000000\) | \([4]\) | \(2211840\) | \(3.0248\) | |
36400.bn1 | 36400cd4 | \([0, 0, 0, -43616075, 110867680250]\) | \(143378317900125424089/4976562500000\) | \(318500000000000000000\) | \([2]\) | \(2211840\) | \(3.0248\) |