Properties

Label 36400cd
Number of curves $4$
Conductor $36400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 36400cd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 36400cd do not have complex multiplication.

Modular form 36400.2.a.cd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} - 3 q^{9} - 4 q^{11} + q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 36400cd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
36400.bn3 36400cd1 \([0, 0, 0, -800075, -251999750]\) \(884984855328729/83492864000\) \(5343543296000000000\) \([2]\) \(552960\) \(2.3317\) \(\Gamma_0(N)\)-optimal
36400.bn2 36400cd2 \([0, 0, 0, -2848075, 1568672250]\) \(39920686684059609/6492304000000\) \(415507456000000000000\) \([2, 2]\) \(1105920\) \(2.6783\)  
36400.bn4 36400cd3 \([0, 0, 0, 5151925, 8792672250]\) \(236293804275620391/658593925444000\) \(-42150011228416000000000\) \([4]\) \(2211840\) \(3.0248\)  
36400.bn1 36400cd4 \([0, 0, 0, -43616075, 110867680250]\) \(143378317900125424089/4976562500000\) \(318500000000000000000\) \([2]\) \(2211840\) \(3.0248\)