Properties

Label 364.a
Number of curves $1$
Conductor $364$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 364.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
364.a1 364b1 \([0, 1, 0, -5, 7]\) \(-65536/91\) \(-23296\) \([]\) \(24\) \(-0.46960\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 364.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 364.a do not have complex multiplication.

Modular form 364.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} - q^{7} + q^{9} - 4 q^{11} + q^{13} - 2 q^{15} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display