# Properties

 Label 36300.j Number of curves 2 Conductor 36300 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("36300.j1")

sage: E.isogeny_class()

## Elliptic curves in class 36300.j

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
36300.j1 36300n2 [0, -1, 0, -37308, 1331112]  184320
36300.j2 36300n1 [0, -1, 0, 8067, 151362]  92160 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 36300.j have rank $$1$$.

## Modular form 36300.2.a.j

sage: E.q_eigenform(10)

$$q - q^{3} - 2q^{7} + q^{9} - 2q^{13} + 4q^{17} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 