Properties

Label 3630.q
Number of curves $1$
Conductor $3630$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3630.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3630.q1 3630q1 [1, 1, 1, -30, 45] [] 480 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3630.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3630.q do not have complex multiplication.

Modular form 3630.2.a.q

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 5q^{17} + q^{18} - q^{19} + O(q^{20}) \)