Show commands for:
SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()
Elliptic curves in class 3630.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
3630.n1 | 3630n3 | [1, 1, 1, -503786, -105462367] | [2] | 76800 | |
3630.n2 | 3630n2 | [1, 1, 1, -171036, 25774233] | [2, 2] | 38400 | |
3630.n3 | 3630n1 | [1, 1, 1, -168616, 26579609] | [4] | 19200 | \(\Gamma_0(N)\)-optimal |
3630.n4 | 3630n4 | [1, 1, 1, 122994, 105515169] | [2] | 76800 |
Rank
sage: E.rank()
The elliptic curves in class 3630.n have rank \(1\).
Complex multiplication
The elliptic curves in class 3630.n do not have complex multiplication.Modular form 3630.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.