Properties

Label 3630.l
Number of curves $1$
Conductor $3630$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3630.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3630.l1 3630l1 [1, 0, 1, -17166878, -24498325744] [] 628320 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3630.l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3630.l do not have complex multiplication.

Modular form 3630.2.a.l

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 3q^{7} - q^{8} + q^{9} - q^{10} + q^{12} + 5q^{13} - 3q^{14} + q^{15} + q^{16} + 7q^{17} - q^{18} + 7q^{19} + O(q^{20}) \)