# Properties

 Label 361b2 Conductor $361$ Discriminant $-322687697779$ j-invariant $$-\frac{89915392}{6859}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 1, -3369, 81208])

gp: E = ellinit([0, -1, 1, -3369, 81208])

magma: E := EllipticCurve([0, -1, 1, -3369, 81208]);

$$y^2+y=x^3-x^2-3369x+81208$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);



## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$361$$ = $$19^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-322687697779$$ = $$-1 \cdot 19^{9}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{89915392}{6859}$$ = $$-1 \cdot 2^{18} \cdot 7^{3} \cdot 19^{-3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.95635250224048318782698598107\dots$$ Stable Faltings height: $$-0.51586698734273704217752773487\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.94681992979742269053643643614\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$2$$  = $$2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2q^{3} - 2q^{4} + 3q^{5} - q^{7} + q^{9} + 3q^{11} - 4q^{12} + 4q^{13} + 6q^{15} + 4q^{16} - 3q^{17} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 360 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.8936398595948453810728728722731192907$$

## Local data

This elliptic curve is not semistable. There is only one prime of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$19$$ $$2$$ $$I_3^{*}$$ Additive -1 2 9 3

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ss ordinary ordinary ordinary ordinary ordinary ordinary add ss ordinary ordinary ordinary ordinary ordinary ordinary ? 0 0 0 0 0 0 - 0,0 0 0 0 0 0 0 ? 0 0 0 0 0 0 - 0,0 0 0 0 0 0 0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 361b consists of 2 curves linked by isogenies of degrees dividing 9.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{57})$$ $$\Z/3\Z$$ 2.2.57.1-19.1-b2 $2$ $$\Q(\sqrt{-19})$$ $$\Z/3\Z$$ Not in database $3$ 3.1.76.1 $$\Z/2\Z$$ Not in database $4$ $$\Q(\sqrt{-3}, \sqrt{-19})$$ $$\Z/3\Z \times \Z/3\Z$$ Not in database $6$ 6.0.109744.2 $$\Z/2\Z \times \Z/6\Z$$ Not in database $6$ 6.2.2963088.1 $$\Z/6\Z$$ Not in database $12$ 12.2.937292452593664.2 $$\Z/4\Z$$ Not in database $12$ 12.0.8779890495744.1 $$\Z/6\Z \times \Z/6\Z$$ Not in database $18$ 18.6.115765164098281427122348305637113.3 $$\Z/9\Z$$ Not in database $18$ 18.0.11067041604778727959971.1 $$\Z/9\Z$$ Not in database

We only show fields where the torsion growth is primitive.