Show commands: SageMath
Rank
The elliptic curves in class 3600i have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 3600i do not have complex multiplication.Modular form 3600.2.a.i
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3600i
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 3600.g2 | 3600i1 | \([0, 0, 0, -3375, 168750]\) | \(-432\) | \(-9841500000000\) | \([2]\) | \(7680\) | \(1.1815\) | \(\Gamma_0(N)\)-optimal |
| 3600.g1 | 3600i2 | \([0, 0, 0, -70875, 7256250]\) | \(1000188\) | \(39366000000000\) | \([2]\) | \(15360\) | \(1.5281\) |